A Computational Conjugate Thermal Analysis of HP Stage Turbine Blade Cooling with Innovative Cooling Passage Geometries

Kini , Chandrakant R and Shenoy, Satish B and Sharma, Yagnesh N (2011) A Computational Conjugate Thermal Analysis of HP Stage Turbine Blade Cooling with Innovative Cooling Passage Geometries. In: Proceedings of the World Congress on Engineering, July 6 - 8, 2011, London, U.K..

[img] PDF
WCE2011_pp2168-2173_2.pdf - Published Version
Restricted to Registered users only

Download (775kB) | Request a copy

Abstract

In most of the practical gas turbines, the turbine blades of HP stage are usually too small to employ the turbine blade cooling techniques effectively. The growing need for effective blade cooling techniques is a direct consequence of the continuous quest for greater fuel economy. It is very well known that the thermal efficiency and power output of gas turbines increase with increasing turbine entry temperature (TET). The current TET level in advanced gas turbines is far above the melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines for high performance. An attempt has been made in this paper to computationally analyze the coupled conjugate analysis of HP stage turbine blade for effective cooling using innovative cooling passages within the blade. An helicoidal shaped duct has been analyzed corresponding to different diameters and pitch length. It is found from the analysis that helicoidal cooling duct with larger diameter and with lower pitch length provides a vastly improved blade cooling in comparison to straight ducted cooling ducts for the HP stage turbine blade.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Conjugate Thermal Analysis, HP Stage Turbine Blade Cooling, Innovative Cooling Geometries
Subjects: Engineering > MIT Manipal > Aeronautical and Automobile
Engineering > MIT Manipal > Mechanical and Manufacturing
Depositing User: MIT Library
Date Deposited: 29 Jun 2013 11:34
Last Modified: 29 Jun 2013 11:34
URI: http://eprints.manipal.edu/id/eprint/136416

Actions (login required)

View Item View Item