Induced Smectic-A phase at low temperatures through self-assembly

Bhagavath, Poornima and Bhat , Sangeetha G and Mahabaleshwara, S and Girish, S R and Potukuchi, D M and Srinivasulu, M (2013) Induced Smectic-A phase at low temperatures through self-assembly. Journal of Molecular Structure (1039). pp. 94-100. ISSN 0022-2860

[img] PDF
sangeetha 1.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy


Self-assembled Smectic-A liquid crystals (LCs) are synthesized with low molar mass non-mesogenic moieties through intermolecular Hydrogen Bonding (HB) interactions. The HB complexes viz., PyBnA:xClBA (where n = 10, 14 and 16; x = 2, 3 and 4) are exhibiting an orthogonal Smectic-A (SmA) mesophase over a wide range of temperatures and towards ambient temperatures. The proton donors in these complexes,chloro substituted benzoic acids viz., 2-chloro, 3-chloro and 4-chloro benzoic acids (xClBA, x is the position of chlorine on the benzoic acid) are non-mesogenic. The proton acceptors, (4-pyridyl)-benzylidene- 40-n-alkyl anilines (decyl, tetradecyl and hexadecyl) (PyBnA, n is no. of carbons in alkyl chain) are also non-mesogenic. The presence of HB between the proton donor and acceptor is confirmed by Fourier Transform Infrared spectroscopy. The characteristic textures of SmA in all the complexes are observed through Polarizing Optical Microscope (POM) in conjunction with a hot stage. The enthalpy changes across the phase transitions (Isotropic – SmA; SmA – Cryst.) are determined by Differential Scanning Calorimeter (DSC). The influence of chain length of proton acceptor and the position of substituent on proton donor on the thermal stability of smectic mesomorphism are studied. The results are compared with reported linear and non-linear HBLC complexes.

Item Type: Article
Uncontrolled Keywords: Self-assembly Hydrogen Bonding Substituted benzoic acids Induced SmA Pyridyl moiety as proton acceptor Schiff’s base
Subjects: Engineering > MIT Manipal > Chemistry
Engineering > MIT Manipal > Physics
Depositing User: MIT Library
Date Deposited: 27 Jun 2014 11:23
Last Modified: 27 Jun 2014 11:23

Actions (login required)

View Item View Item