Differential Private Random Forest

Patil, Abhijit and Singh, Sanjay (2014) Differential Private Random Forest. In: International Conference on Advances in Computing,Communications and Informatics, 2014.

[img] PDF
sanjay_3.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy


Organizations be it private or public often collect personal information about an individual who are their customers or clients. The personal information of an individual is private and sensitive which has to be secured from data mining algorithm which an adversary may apply to get access to the private information. In this paper we have consider the problem of securing these private and sensitive information when used in random forest classifier in the framework of differential privacy. We have incorporated the concept of differential privacy to the classical random forest algorithm. Experimental results shows that quality functions such as information gain, max operator and gini index gives almost equal accuracy regardless of their sensitivity towards the noise. Also the accuracy of the classical random forest and the differential private random forest is almost equal for different size of datasets. The proposed algorithm works for datasets with categorical as well as continuous attributes

Item Type: Conference or Workshop Item (Paper)
Subjects: Engineering > MIT Manipal > Information and Communication Technology
Depositing User: MIT Library
Date Deposited: 05 Dec 2014 05:55
Last Modified: 05 Dec 2014 05:55
URI: http://eprints.manipal.edu/id/eprint/141207

Actions (login required)

View Item View Item