Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2�xBaxMnO3 (0 6 x 6 0.2) manganites

Manjunatha, S O and Rao, Ashok and Subhashini, * and Okram, G S (2015) Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2�xBaxMnO3 (0 6 x 6 0.2) manganites. Journal of Alloys and Compounds, 640. pp. 154-161.

[img] PDF
New_paper_JALCOM.pdf-7.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

A systematic study on the structural, electrical, magnetic and thermo-electric properties of La0.8BaxCa0.2�xMnO3 (0 6 x 6 0.2) manganites is carried out in the present work. The samples have been prepared using solid state reaction technique. All the samples are single phased. It is seen that Ba-doping introduces a structural phase transformation viz. from rhombohedral to cubic system. Electric and magnetic studies respectively show that the metal–insulator transition temperature, TMI and Curie temperature, TC increase with Ba-content. Magneto-resistance (MR) data shows that it decreases with Ba-doping. Analyses of the electrical transport data in metallic region i.e. T < TMI shows that the electrical transport is governed predominantly by electron–electron scattering process. On the other hand, the adiabatic small polaron hopping (ASPH) model is appropriate in the high-temperature insulating range viz. T > TMI. We have used the electrical resistivity data in the entire temperature range (50–300 K) and analyzed using the phenomenological percolation model which is based on the phase segregation mechanism. We have analyzed the Seebeck coefficient data which reveals that the small polaron hopping mechanism is operative in high temperature regime and the low temperature region is examined by taking into account the impurity, electron–magnon scattering, and spin wave fluctuation terms. It is established that the electron–magnon scattering is dominating for the thermoelectric transport below TMI.

Item Type: Article
Uncontrolled Keywords: Manganites Magneto-resistance Magnetization Thermo-electric power
Subjects: Engineering > MIT Manipal > Physics
Depositing User: MIT Library
Date Deposited: 27 Jun 2015 10:58
Last Modified: 27 Jun 2015 10:58
URI: http://eprints.manipal.edu/id/eprint/143170

Actions (login required)

View Item View Item