Scaling Effect of Direct Solar Hot Water Systems on Energy Efficiency

Arunachala, U C and Bhatt, Siddhartha M and Sreepathi, L K (2010) Scaling Effect of Direct Solar Hot Water Systems on Energy Efficiency. Journal of Solar Energy Engineering, 132 (4). ISSN 0199-6231

[img] PDF
PUBLISHED_PAPER6.pdf - Published Version
Restricted to Registered users only

Download (767kB) | Request a copy
Official URL:


Scale formation in risers and header of direct solar hot water systems is a problem in places where hard water is being used. In this paper, the effect of scaling on energy efficiency indices such as instantaneous efficiency, mass flow rate, and overall heat loss coefficient are quantified by Hottel–Whillier–Bliss equation in the case of thermosiphon and forced circulation systems. The effect of scaling on mass flow and heat transfer rate for both the systems are quantified with experimental validation. Experimentally found mass flow rate is 50% of the analytical mass flow rate for a clean riser and agrees 99% for the case of riser with 3.75 mm scale thickness. This is due to the extreme change in pressure gain in the narrow region. Scale mapping is done for the entire solar hot water system to study the nature of scale growth. The complete footer and nine risers for the length of 150 mm from footer are free from scaling in axial and radial direction. This is due to the low water temperature in the region. The major portion of header and risers for the length 180 mm from the header are completely blocked due to maximum temperature of water in that region. A scale prediction model is brought out based on the experimentally observed scaled water heaters in the field. It reveals that the major parameters to be considered for the correlation are water total hardness and calcium hardness. It is seen in the thermosiphon system that the mass flow rate decreased by scaling affects energy efficiency more than that caused by the heat transfer rate. The scaling effect is more predominant in thermosiphon systems than in forced circulation systems. The analytical study reveals a drop in instantaneous efficiency of 39.5% in thermosiphon system and 7.0% in the case of forced circulation system for the scale thickness of 3.75 mm. The difference between mass flow rate in scaled and unscaled condition is less in forced circulation but much higher in thermosiphon system.

Item Type: Article
Uncontrolled Keywords: HWB equation, scale mapping, scaling, thermosiphon systems, forced circulation systems
Subjects: Engineering > MIT Manipal > Mechanical and Manufacturing
Depositing User: MIT Library
Date Deposited: 08 Nov 2011 10:48
Last Modified: 08 Nov 2011 10:48

Actions (login required)

View Item View Item