In-situ Implant Containing PCL-curcumin Nanoparticles Developed using Design of Experiments

Kasinathan, Narayanan and Amirthalingam, Muthukumar and Reddy, Neetinkumar D and Jagani, Hitesh V and Volety, Subrahmanyam Mallikarjuna and Rao, Josyula Venkata (2016) In-situ Implant Containing PCL-curcumin Nanoparticles Developed using Design of Experiments. Drug Delivery, 23 (3). pp. 1007-1015. ISSN 1521-0464

[img] PDF
551 DisplayPdf.pdf - Published Version
Restricted to Registered users only

Download (685kB) | Request a copy

Abstract

Context: Polymeric delivery system is useful in reducing pharmacokinetic limitations viz., poor absorption and rapid elimination associated with clinical use of curcumin. Design of experiment is a precise and cost effective tool useful in analyzing the effect of independent variables and their interaction on the product attributes.Objective: To evaluate the effect of process variables involved in preparation of curcuminloaded polycaprolactone (PCL) nanoparticles (CPN).Materials and methods: In the present experiment, CPNs were prepared by emulsification solvent evaporation technique. The effect of independent variables on the dependent variable was analyzed using design of experiments. Anticancer activity of CPN was studied using Ehrlich ascites carcinoma (EAC) model. In-situ implant was developed using PLGA as polymer.Results and discussion: The effect of independent variables was studied in two stages. First, the effect of drug–polymer ratio, homogenization speed and surfactant concentration on size was stu ied using factorial design. The interaction of homogenization speed with homogenization time on mean particle size of CPN was then evaluated using central composite design. In the second stage, the effect of these variables (under the conditions optimized for producing particles 5500 nm) on percentage drug encapsulation was evaluated using factorial design.CPN prepared under optimized conditions were able to control the development of EAC in Swiss albino mice and enhanced their survival time. PLGA based in-situ implant containing CPN prepared under optimized conditions showed sustained drug release.Conclusion: This implant could be further evaluated for pharmacological activities.

Item Type: Article
Uncontrolled Keywords: Central composite design; Ehrlich ascites carcinoma; Factorial design; Nanodelivery; Quality by design
Subjects: Pharmacy > MCOPS Manipal > Pharmaceutical Biotechnology
Pharmacy > MCOPS Manipal > Pharmaceutics
Pharmacy > MCOPS Manipal > Pharmacology
Depositing User: KMC Library
Date Deposited: 12 May 2016 09:18
Last Modified: 12 May 2016 09:18
URI: http://eprints.manipal.edu/id/eprint/146041

Actions (login required)

View Item View Item