Phenotype and genotype in patients with Larsen syndrome: clinical homogeneity and allelic heterogeneity in seven patients

Girisha, KM and Bidchol, Abdul Mueed and Gupta, Ashish and Shah, Hitesh (2016) Phenotype and genotype in patients with Larsen syndrome: clinical homogeneity and allelic heterogeneity in seven patients. BMC Medical Genetics, 17 (27). pp. 1-14.

[img] PDF
RMS-0453.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy


Background: Larsen syndrome is an autosomal dominant skeletal dysplasia characterized by large joint dislocations and craniofacial dysmorphism. It is caused by missense or small in-frame deletions in the FLNB gene. To further characterize the phenotype and the mutation spectrum of this condition, we investigated seven probands, five sporadic individuals and a mother-son-duo with Larsen syndrome. Methods: The seven patients from six unrelated families were clinically and radiologically evaluated. All patients were screened for mutations in selected exons and exon-intron boundaries of the FLNB gene by Sanger sequencing. FLNB transcript analysis was carried out in one patient to analyse the effect of the sequence variant on pre-mRNA splicing. Results: All patients exhibited typical facial features and joint dislocations. Contrary to the widely described advanced carpal ossification, we noted delay in two patients. We identified the five novel mutations c.4927G > A/p.(Gly1643Ser), c.4876G > T / p.(Gly1626Trp), c.4664G > A / p.(Gly1555Asp), c.2055G > C / p.Gln685delins10 and c.5021C > T / p.(Ala1674Val) as well as a frequently observed mutation in Larsen syndrome [c.5164G > A/p.(Gly1722Ser)] in the hotspot regions. FLNB transcript analysis of the c.2055G > C variant revealed insertion of 27 bp intronic sequence between exon 13 and 14 which gives rise to in-frame deletion of glutamine 685 and insertion of ten novel amino acid residues (p.Gln685delins10). Conclusions: All seven individuals with Larsen syndrome had a uniform clinical phenotype except for delayed carpal ossification in two of them. Our study reveals five novel FLNB mutations and confirms immunoglobulin-like (Ig) repeats 14 and 15 as major hotspot regions. The p.Gln685delins10 mutation is the first Larsen syndrome-associated alteration located in Ig repeat 5. All mutations reported so far leave the filamin B protein intact in accordance with a gain-offunction effect. Our findings underscore the characteristic clinical picture of FLNB-associated Larsen syndrome and add Ig repeat 5 to the filamin B domains affected by the clustered mutations.

Item Type: Article
Uncontrolled Keywords: Larsen syndrome; FLNB; Mutation; Gain-of-function; Autosomal-dominant; Pre-mRNA splicing.
Subjects: Medicine > KMC Manipal > Orthopaedics
Medicine > KMC Manipal > Paediatrics
Depositing User: KMC Library
Date Deposited: 19 Jul 2016 12:05
Last Modified: 19 Jul 2016 12:05

Actions (login required)

View Item View Item