Kullback-Leibler distance-based enhanced detection of incipient anomalies

Harrou, Fouzi and Sun, Ying and Madakyaru, Muddu (2016) Kullback-Leibler distance-based enhanced detection of incipient anomalies. Journal of Loss Prevention in the Process Industries, 44. pp. 73-87. ISSN 0950-4230

[img] PDF
1074.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://www.sciencedirect.com/science/journal/09504...


Accurate and effective anomaly detection and diagnosis of modern engineering systems by monitoring processes ensure reliability and safety of a product while maintaining desired quality. In this paper, an innovative method based on Kullback-Leibler divergence for detecting incipient anomalies in highly correlated multivariate data is presented. We use a partial least square (PLS) method as a modeling framework and a symmetrized Kullback-Leibler distance (KLD) as an anomaly indicator, where it is used to quantify the dissimilarity between current PLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, this paper reports the development of two monitoring charts based on the KLD. The first approach is a KLD-Shewhart chart, where the Shewhart monitoring chart with a three sigma rule is used to monitor the KLD of the response variables residuals from the PLS model. The second approach integrates the KLD statistic into the exponentially weighted moving average monitoring chart. The performance of the PLS-based KLD anomaly-detection methods is illustrated and compared to that of conventional PLS-based anomaly detection methods. Using synthetic data and simulated distillation column data, we demonstrate the greater sensitivity and effectiveness of the developed method over the conventional PLS-based methods, especially when data are highly correlated and small anomalies are of interest. Results indicate that the proposed chart is a very promising KLDbased method because KLD-based charts are, in practice, designed to detect small shifts in process parameters.

Item Type: Article
Uncontrolled Keywords: Anomaly detection Statistical process control Kullback-Leibler distance Partial least square
Subjects: Engineering > MIT Manipal > Chemical
Depositing User: MIT Library
Date Deposited: 08 Sep 2016 15:40
Last Modified: 08 Sep 2016 15:40
URI: http://eprints.manipal.edu/id/eprint/146936

Actions (login required)

View Item View Item