Clustering learner profiles based on usage data in adaptive e-learning

Kolekar, Sucheta and Pai, Radhika M and Pai, Manohara M.M. (2016) Clustering learner profiles based on usage data in adaptive e-learning. International Journal of Knowledge and Learning, 24 (41). pp. 24-40. ISSN 1741-1009

[img] PDF
1239.pdf - Published Version
Restricted to Registered users only

Download (487kB) | Request a copy
Official URL:


Adaptive e-learning systems enhance the efficiency of online education by providing personalised, adaptive contents and user interfaces which change with respect to learner’s requirements. In order to understand the learner’s requirements, learners with similar learning behaviour have to be grouped into clusters based on the usage data of each learner. In this paper, a clustering technique to group learner’s profiles is proposed where learners will be grouped based on similar sequences of accesses to learning material and time spent. A learner’s model is designed based on Felder and Silverman learning style model. The clustering algorithm has two different phases, where the first phase considers the all sequences of access of learners which are in the chronological order of accessing the learning components and learning materials on the portal. The second phase considers the time spent on each learning components as a fuzzy membership function and groups the similar sequences of learners into three clusters. Learners in the clusters have similar learning behaviour for providing adaptive interfaces and contents.

Item Type: Article
Uncontrolled Keywords: web log analysis; FSLSM; Felder-Silverman learning style model; adaptive e-learning systems; cluster
Subjects: Engineering > MIT Manipal > Information and Communication Technology
Depositing User: MIT Library
Date Deposited: 14 Oct 2016 16:02
Last Modified: 14 Oct 2016 16:02

Actions (login required)

View Item View Item