Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay

Hebbar, Raghavendra and Isloor, Arun M and Prabhu, Balakrishna K and Inamuddin, . and Asiri, Abdullah M and Ismail, A F (2018) Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Scientific Reports. ISSN 2045-2322

[img] PDF
4196.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy

Abstract

Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the ydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

Item Type: Article
Subjects: Engineering > MIT Manipal > Chemical
Depositing User: MIT Library
Date Deposited: 26 Jun 2018 06:29
Last Modified: 21 Nov 2018 05:29
URI: http://eprints.manipal.edu/id/eprint/151345

Actions (login required)

View Item View Item