Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses

Hegde, Vinod and Dwaraka Viswanath, C S and Chauhan, Naveen and Mahato, KK and Kamath, Sudha D (2018) Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Optical Materials, 1 (1). pp. 268-277. ISSN 0925-3467

[img] PDF
4801.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy


Present study reports the effects of varying concentrations of Pr3+ ions on the optical properties of 10ZnO-5Na2CO3- 10Bi2O3-75-xB2O3-xPr6O11 (x=0.1–1mol%) glasses prepared through melt-quench technique with an aim to achieve suitable optical gain medium for optoelectronic applications. Minimal changes in the measured density, X-Ray diffractogram and Fourier Transform Infrared spectra of the prepared samples confirmed the stability of the glass structure even after 1mol% doping of the Pr3+. Bonding nature of Pr3+ ion with surrounding ligands and Judd-Oflet (J-O) intensity parameters of the glasses were determined using optical absorption spectra. The photoemission spectra exhibited reddish orange emission around 605 nm at 445 nm excitation. The calculated color chromaticity with x=0.5847, y=0.3701 coordinates for 0.1mol% of the Pr3+ in the glasses suggests suitable optical gain medium for reddish orange LED applications. Metastable lifetimes of the Pr3+ ion were found-out by exponential fitting to the decay profiles. Lasing parameters of the glasses such as branching ratio, radiative transition probability and stimulated emission cross-section of 1D2→3H4 transition were calculated using JO parameters indicating 0.1mol% Pr3+-doped glasses suitable for 605 nm solid-state laser applications. The mechanism of energy transfer is determined by applying the Inokuti-Hirayama model and was found to involve a dipole-dipole type of interactions. Thermoluminescence (TL) glow curves of the gamma-ray treated 0.1 mol% Pr3+-doped zinc sodium bismuth borate glasses were de-convoluted using Computerized Glow Curve Deconvolution method to evaluate the energy storage properties of the glasses. The intensity variation of the TL component peak (CP2) at 500 K showed linear behavior up to 3 kG y suggesting application in high dose measurements.

Item Type: Article
Uncontrolled Keywords: FTIR, oscillator strength, Judd-Ofelt parameters, photoluminescence, decay curve ,TL glow curve, kin
Subjects: Engineering > MIT Manipal > Physics
Depositing User: MIT Library
Date Deposited: 02 Aug 2018 05:18
Last Modified: 02 Aug 2018 05:18

Actions (login required)

View Item View Item