2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm agent against Non-candida albicans candida species

Devadas, Suganthi Martena and Nayak, Usha Y and Narayan, Reema and Hande, Manjunath H and Ballal, Mamatha (2019) 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm agent against Non-candida albicans candida species. Mycopathologia, 184 (3). pp. 1-9. ISSN 0301-486X

[img] PDF
RMS - 00006781.pdf - Published Version
Restricted to Registered users only

Download (777kB) | Request a copy

Abstract

Background The predominance of non-Candida albicans Candida (NCAC) species causing healthcare- associated infections has increased over the last decade pertaining to their ability to form biofilms on medical devices. These biofilm-associated infections are challenging to treat as they are resistant to antifungal agents and evade host-immune response resulting in a high risk of device failure or biomaterial removal. Thus, to minimize the risk of biofilmassociated infections, preventing biofilm formation is the best approach which is mediated by the quorum quenching process. Methods The present study investigated the modulatory effect of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) on NCAC biofilm formation and also assessed the effect of the DMHF-coated catheters on biofilm formation of NCAC. The NCAC isolates studied were Candida tropicalis, Candida glabrata and Candida krusei isolated from catheter tip, urine and blood, respectively. Results DMHF at a concentration of 30 lg/mL showed an inhibitory effect against NCAC biofilms at various stages and was statistically significant (p B 0.05) against the various concentrations (50–5 lg/mL) tested and also among the three phases of experiment. The furanone content on coated catheters ranged from 170 to 750 lg and release of furanone from the coated catheter was about 15 lg for 30 days. The effect of DMHF-coated catheters on NCAC biofilm formation was observed by the scanning electron microscopy which revealed the absence of NCAC adherence on DMHF-coated catheters. Discussion This study provides a design to develop furanone-coated biomaterials which could be implemented in healthcare settings to reduce medical device-associated infections. The excellent biological performance, combined with their antimicrobial properties, suggests that 2,5-dimethyl-4-hydroxy-3(2H)- furanone could be an effective anti-infective coating for implantable devices.

Item Type: Article
Uncontrolled Keywords: 2,5-Dimethyl-4-hydroxy-3(2H)- furanone; Non-Candida albicans candida; biofilms; catheter coating; implantable devices; scanning electron microscope.
Subjects: Medicine > KMC Manipal > Medicine
Medicine > KMC Manipal > Microbiology
Pharmacy > MCOPS Manipal > Pharmaceutics
Depositing User: KMC Library
Date Deposited: 21 Jun 2019 11:53
Last Modified: 21 Jun 2019 11:53
URI: http://eprints.manipal.edu/id/eprint/154022

Actions (login required)

View Item View Item