LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg (II) in water, soil and food samples

Sadani, Kapil and Nag, Pooja and Mukherjia, Soumyo (2019) LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg (II) in water, soil and food samples. Biosensors and Bioelectronics, 134. pp. 90-96. ISSN 0956-5663

[img] PDF
6830.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Mercury is a diversely bioaccumulating heavy metal pollutant toxic to all life forms. In this work, an optical biosensor has been developed and calibrated for universal detection and quantification of mercuric ions, in the range 0.1–540 parts per billion, in biological and environmental samples. Chitosan capped gold nanoparticles on bovine serum albumin are proposed as an ultrasensitive plasmonic mercury receptor on U-bend optical fiber platform. The sensor was calibrated and tested with tap water, sewage contaminated water, marine water, long lived sea fish tissue, fossil fuel fly ash contaminated soil and vegetable samples. The sensor performance was validated with real samples inherently containing mercury. Overall standard error of less than 15% and a coefficient of variation less than 12% (n = 3) was found across all samples, indicating good fitness for diverse usage. Experimentally determined limit of detection of mercuric ions was 0.1 parts per billion in tap water (twenty times lesser than the Environment protection agency limit of 2 parts per billion in drinking water) and 0.2 parts per billion in sea fish and vegetable samples with negligible cross sensitivity towards other metal ions.

Item Type: Article
Subjects: Engineering > MIT Manipal > Instrumentation and Control
Engineering > MIT Manipal > Mechatronics
Depositing User: MIT Library
Date Deposited: 06 Aug 2019 09:38
Last Modified: 06 Aug 2019 09:38
URI: http://eprints.manipal.edu/id/eprint/154310

Actions (login required)

View Item View Item