Automated glaucoma detection using center Slice of higher order statistics

Bhandary, Sulatha V (2019) Automated glaucoma detection using center Slice of higher order statistics. Journal of Mechanics in Medicine and Biology, 19 (1). pp. 1-21. ISSN 1793-6810

[img] PDF
10149 DisplayPdf.pdf - Published Version
Restricted to Registered users only

Download (853kB) | Request a copy


Glaucoma is one of the leading causes of blindness. The raised intraocular pressure is one of the important modifiable risk factor causing glaucomatous optic nerve damage. Glaucomatous optic nerve damage is seen as increase in the cupping of the optic disc and loss of neuroretinal rim. An automated detection system using nonlinear higher order statistics (HOS) based method is used to capture the detailed information present in the fundus image efficiently. The center slice of bispectrum and bicepstrum are applied on fundus images. Various features are extracted from the diagonal of these central slices. In order to reduce the number of features the locality sensitive discriminant analysis (LSDA) data reduction technique method is implemented.The ranked LSDA features are fed to support vector machine (SVM) classifier with various kernels for automated glaucoma detection. The simulation is performed on two databases. The proposed algorithm has yielded classification accuracy of 98.8% and 95% using entire private and public databases, respectively. The proposed technique achieved the highest classification accuracy, hence, confirm the diagnosis of ophthalmologists and can be employed in the community health care centers and hospitals

Item Type: Article
Uncontrolled Keywords: Glaucoma; Automated eye diagnosis; Center slice; Higher order statistics; Bispectrum; Bicepstrum; LSDA; SVM
Subjects: Medicine > KMC Manipal > Ophthalmology
Depositing User: KMC Library
Date Deposited: 03 Nov 2020 08:48
Last Modified: 03 Nov 2020 08:48

Actions (login required)

View Item View Item