Experimental Investigation and ANFIS-Based Modelling During Machining of EN31 Alloy Steel

Shivakoti, Ishwer and Rodrigues, Lewlyn L R and Robert, Cep and Pradhan, Premendra Mani and Sharma, Ashish and Bhoi, Akash Kumar (2020) Experimental Investigation and ANFIS-Based Modelling During Machining of EN31 Alloy Steel. Materials, 13 (3137). ISSN 1996-1944

[img] PDF
10668.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

This research presents the parametric effect of machining control variables while turning EN31 alloy steel with a Chemical Vapor deposited (CVD) Ti(C,N) + Al2O3 + TiN coated carbide tool insert. Three machining parameters with four levels considered in this research are feed, revolutions per minute (RPM), and depth of cut (ap). The influences of those three factors on material removal rate (MRR), surface roughness (Ra), and cutting force (Fc) were of specific interest in this research. The results showed that turning control variables has a substantial influence on the process responses. Furthermore, the paper demonstrates an adaptive neuro fuzzy inference system (ANFIS) model to predict the process response at various parametric combinations. It was observed that the ANFIS model used for prediction was accurate in predicting the process response at varying parametric combinations. The proposed model presents correlation coefficients of 0.99, 0.98, and 0.964 for MRR, Ra, and Fc, respectively

Item Type: Article
Uncontrolled Keywords: alloy steel; feed; ANFIS; RPM; turning
Subjects: Engineering > MIT Manipal > Humanities and Management
Depositing User: MIT Library
Date Deposited: 28 Jan 2021 09:27
Last Modified: 28 Jan 2021 09:27
URI: http://eprints.manipal.edu/id/eprint/156360

Actions (login required)

View Item View Item