A deep neural architecture based meta-review generation and final decision prediction of a scholarly article

Pradhan, Tribikram and Bhatia, Chaitanya and Kumar, Prashant and Pal, Sukomal (2021) A deep neural architecture based meta-review generation and final decision prediction of a scholarly article. Neurocomputing, 428. pp. 218-238. ISSN 0925-2312

[img] PDF
12828.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://www.elsevier.com/locate/neucom


Peer reviews form an essential part of scientific communications. Research papers and proposals are reviewed by several peers before they are finally accepted or rejected for publication and funding, respectively. With the steady increase in the number of research domains, scholarly venues (journal and/or conference), researchers, and papers, managing the peer review process is becoming a daunting task. Application of recommender systems to assist peer reviewing is, therefore, being explored and becoming an emerging research area. In this paper, we present a deep learning network based Meta-Review Generation considering peer review prediction of the scholarly article (MRGen). MRGen is able to provide solutions for: (i) Peer review prediction (Task 1) and (ii) Meta-review generation (Task 2). First, the system takes the peer reviews as input and produces a draft meta-review. Then it employs an integrated framework of convolution layer, long short-term memory (LSTM) model, Bi-LSTM model, and attention mechanism to predict the final decision (accept/reject) of the scholarly article. Based on the final decision, the proposed model MRGen incorporates Pointer Generator Network-based abstractive summarization to generate the final meta-review. The focus of our approach is to give a concise meta-review that maximizes information coverage, coherence, readability and also reduces redundancy. Extensive experiments conducted on the PeerRead dataset demonstrate good consistency between the recommended decisions and original decisions. We also compare the performance of MRGen with some of the existing state-ofthe- art multi-document summarization methods. The system also outperforms a few existing models based on accuracy, Rouge scores, readability, non-redundancy, and cohesion.

Item Type: Article
Uncontrolled Keywords: Deep learning Multi-document summarization Coherence analysis Coreference resolution Classification Random walk with restart (RWR
Subjects: Engineering > MIT Manipal > Information and Communication Technology
Depositing User: MIT Library
Date Deposited: 29 Sep 2021 09:33
Last Modified: 29 Sep 2021 09:33
URI: http://eprints.manipal.edu/id/eprint/157466

Actions (login required)

View Item View Item