Bhat, Ashwini and Katagi, N N (2021) Magnetohydrodynamic flow of viscous fluid and heat transfer analysis between permeable discs: Keller-box solution. Case Studies in Thermal Engineering, 28. ISSN 2214-157X
![]() |
PDF
13491.pdf - Published Version Restricted to Registered users only Download (3MB) | Request a copy |
Abstract
In this study, we looked at a two-dimensional constant, laminar, and incompressible viscous flow between two porous discs in the presence of an external magnetic field. The proper similarity transformations simplify the complicated governing problem to nonlinear differential equations with suitable velocity slip and other boundary conditions. The Keller-box method, an efficient finite-difference approach, is used to get its solutions. The purpose of this analysis is to investigate the effect of non-zero tangential slip velocity on velocity, temperature profiles, and shear stress for various relevant parameters. The data is then displayed in tables and graphs to examine ve�locity and temperature profiles for different flow parameters such as Reynolds number, Hartmann number, Prandtl number, and slip coefficient. In the absence of slip, the results were quite similar to previous findings.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Porous disc Viscous fluid Slip velocity Keller-box method MHD flow |
Subjects: | Engineering > MIT Manipal > Mathematics |
Depositing User: | MIT Library |
Date Deposited: | 23 Mar 2022 06:02 |
Last Modified: | 23 Mar 2022 06:02 |
URI: | http://eprints.manipal.edu/id/eprint/158404 |
Actions (login required)
![]() |
View Item |