Effect of acute administration of ursolic acid on haloperidol induced catalepsy in albino mice

Sudhakar Penminati, Gopalakrishna HN*, Ashok Varma K, Maitrayee Chakraborty, Bheemesh V,
Ratnakar UP, Sheethal D Ullal, Ashok K Shenoy
Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India.

Received on: 10-05-2011; Revised on: 14-06-2011; Accepted on: 18-07-2011

Abstract
Neuroleptic drugs used in the treatment of schizophrenia and other affective disorders are known to produce extrapyramidal side effects. Catalepsy induced by these drugs in animals has been used as a model for the extrapyramidal side effects associated with antipsychotic agents in human beings. In the present study, we have attempted to evaluate the protective effect of the ursolic acid (UA) on haloperidol (1.0 mg/kg, intraperitoneal administration)-induced catalepsy in mice by employing the standard bar test. Mice were allocated to five groups, each group containing six animals. The effects of the test drug UA (at 0.05, 0.1 & 0.2 mg/kg doses) and the standard drug, scopolamine (1.0 mg/kg) was assessed after single dose administration, 30 minutes prior to the haloperidol. The results suggest that UA has a protective effect against haloperidol-induced catalepsy, which is comparable to the standard drug used for the same purpose. Our study indicates that UA could be used to prevent neuroleptic drug induced extrapyramidal side effects.

Key words: Catalepsy, haloperidol, ursolic acid, scopolamine, mice

Introduction
Neuroleptic-induced catalepsy has long been used as an animal model for screening drugs for Parkinsonism1. There is considerable evidence that block-ade of dopaminergic (DA) transmission produces catalepsy2, in rodents and extrapyramidal side effects in humans3. Catalepsy is defined as the failure to correct an externally imposed posture. This test is widely used to evaluate the effect of drugs on extrapyramidal system4. Haloperidol blocks dopamine D2 receptors and produces a state of catalepsy in animals by reducing dopaminergic transmission in basal ganglion. Anticholinergic drugs are most effective in counteracting the catalepsy induced by haloperidol in animals5. But these anti-cholinergic drugs produce various side effects like dryness of mouth, constipation, urination, retention. Hence the search for newer drugs with fewer side effects is continuing.

Ursolic acid is a triterpenoid compound which exists widely in natural plants in the form of free acid or aglycones for triterpenoid saponins. Triterpenoids have many biological effects6 Various plants containing ursolic acid have shown hepatoprotective activity7. Ursolic acid has also been implicated in inhibition of liperoxidase and cyclooxygenase in HL60 leukemic cells, inhibition of mutagenesis in bacteria8, anti-tumor-promotion9, inhibition of histamine release10, inhibition of lipid peroxidation and protection against adriamycin toxicity11, antimicrobial activity12, inhibition of mouse skin tumorigenesis13, anti-inflammatory action14, hypotidemic and anti-atherosclerotic effects15 and anti-ulcer activity16.

Ursolic Acid has been identified as the active principle of Osimum sanctum (OS). From our laboratory we have reported antictataleptic17, antianxiety18 and antidepressant activity19 of OS. As UA is one of the primary active principle of OS and the OS extract has shown anticitataleptic activity, we intend to study the role of UA on acute administration in protecting against haloperidol induced catalepsy in mice (HIC).

Materials and Methods
Animals:
Adult male albino mice (weighing 25-30gm), bred in the central animal house of Kasturba medical college, Mangalore, were used for the study. The animals were housed under standard 12h: 12h light/dark cycle and provided food and water ad libitum. They were allowed to acclimatize to the laboratory conditions for at least seven days prior to any experimentation. Each animal was used only once. The experiment procedures were performed between 10.00 and 16.00 hrs. The experimental protocol was approved by the Institutional Animal Ethics Committee and the study was conducted according to the Indian National Science Academy Guidelines for the use and care of experimental animals.

Drugs:
The test drug, ursolic acid (Sigma Aldrich Chemicals Pvt. Ltd, United Kingdom, HS No. 29181985900) was dissolved in 14% Dmethyl sulfoxide (DMSO) and administered orally in a dose of 0.05, 0.1, 0.2 mg/kg). The standard drug scopolamine (German Remedies Ltd., Mumbai) was suspended in 1% gum acacia solution and administered orally (1.0mg/kg). Haloperidol (RPG Life Sciences Ltd., Mumbai) was dissolved in distilled water and was given by the intraperitoneal route (1.0mg/kg), 14% DMSO (Sigma Aldrich Chemicals Pvt.Ltd, United Kingdom, HS No. 29309085990) administered by oral route (10ml/kg) served as the vehicle.

Experimental design:
Haloperidol induced Catalepsy (HIC): Thirty minutes after administration of vehicle/drugs, haloperidol (1mg/kg body weight) was administered by the intraperitoneal route to induce catalepsy. This dose of haloperidol was chosen to produce a moderate degree of catalepsy so that attenuation or potentiation of the phenomenon could be detected20. The degree of catalepsy was measured at 30, 60, 90, 120 and 240 minutes after haloperidol administration by using a method similar to the standard bar test21.

Catalepsy was assessed in terms of the time for which the mouse maintained an imposed position with both front limbs extended and resting on a 4cm high wooden bar (1.0cm diameter). The end point of catalepsy was considered to occur when both front paws were removed from the bar or if the animal moved its head in an exploratory manner. A cut-off time of 1100 seconds was applied during the recording of observations22. The animals were returned to their individual home cages in between determinations. All observations were made between 10:00 and 16:00 hours in a quiet room at 23-25°C.

Scoring method:
If the animal maintained the imposed posture for at least 20 seconds, it was considered to be cataleptic and given one point. One extra point was given for every additional period of 20 seconds that the cataleptic posture was maintained. The animals were tested twice at 30 minute time intervals and only the greater duration of immobility was considered23.

In the present study, ursolic acid (dose of 0.05, 0.1, 0.2 mg/kg) and scopolamine (1.0 mg/kg) were administered in a single dose 30 minutes prior to the haloperidol administration. Catalepsy was determined 30 minutes after haloperidol administration.

*Corresponding author.
Dr. Gopalakrishna H.N., Ph.D.
Associate Professor, Department of Pharmacology, Kasturba Medical College, Mangalore University, Mangalore – 575 001, Karnataka, India.
Tel.: 91-824-2423452, Ext.: 5568
Email:penminati1@yahoo.com
However, in the ursolic acid treated groups significant reduction in the cataleptic scores was observed in all the three observed dose ranges (0.05mg/kg, 0.1mg/kg & 0.2mg/kg) when observed after the 60 minute interval which lasted up to 240min. Ursolic acid in the lower dose ranges of 0.05mg/kg and 0.1mg/kg failed to show significant reduction in the cataleptic scores when observed initially (time interval of 30 min), though the reduction was significant in the higher dose range (0.2mg/kg). However, the reduction was not dose dependent.

The present study revealed the anti cataleptic effect of ursolic acid, on acute administration in a murine model of haloperidol induced catalepsy. Pre-treatment of ursolic acid protected the mice from catalepsy induced by haloperidol as effectively as the standard drug scopolamine. Moreover, the test drug (0.2mg/kg) also showed a quicker onset of action as compared to scopolamine in the acute study. The protective effect of UA against HIC is consistent with our earlier report on anti cataleptic effect of an herbal product, ethanoic leaf extract of Ocimum sanctum\(^\text{viii}\) containing UA as one of its active principles. Earlier behavioral studies in rodents have suggested that OS facilitates activation of dopaminergic neurons and increases dopamine levels in the corpus striatum\(^\text{vii}\). Thus, the anti cataleptic effect of UA might be due to both its dopamine facilitatory and antioxidant properties. Previous studies have reported the antioxidant properties of Ursolic acid and it has been claimed to give remarkable protection against lipid peroxidation\(^\text{x}\). Since reactive oxygen species have been implicated in haloperidol induced toxicity it can be safely assumed that the antioxidant property of ursolic acid may contribute towards its anti cataleptic activity also. However, further research is needed to elucidate its exact mechanism of action.

To conclude, the results of the present study indicates that ursolic acid can be further screened for its potential as an alternative/adjuvant drug in preventing and treating the extrapyramidal side effects of antipsychotic agents in clinical practice.

REFERENCES